Features

SuperLocalMemory V2 combines cutting-edge 2026 research with practical, production-ready features.

πŸ—οΈ 10-Layer Universal Architecture

The only memory system with both MCP (agent-to-tool) and A2A (agent-to-agent) protocol support. Each layer enhances the previous one.

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Layer 10: A2A AGENT COLLABORATION (v2.5.0)         β”‚
β”‚  Agent-to-Agent protocol for multi-agent sync      β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Layer 9: VISUALIZATION (v2.2.0)                    β”‚
β”‚  Interactive dashboard, timeline, search explorer   β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Layer 8: HYBRID SEARCH (v2.2.0)                    β”‚
β”‚  Semantic + FTS5 + Graph = 80ms with max accuracy  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Layer 7: UNIVERSAL ACCESS                          β”‚
β”‚  MCP + Skills + CLI (works everywhere)             β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Layer 6: MCP INTEGRATION                           β”‚
β”‚  6 tools, 4 resources, 2 prompts                   β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Layer 5: SKILLS LAYER                              β”‚
β”‚  6 universal slash-commands                        β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Layer 4: PATTERN LEARNING + MACLA (v2.4.0)         β”‚
β”‚  Bayesian Beta-Binomial confidence scoring         β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Layer 3: KNOWLEDGE GRAPH + HIERARCHICAL (v2.4.1)   β”‚
β”‚  Recursive Leiden clustering + community summaries β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Layer 2: HIERARCHICAL INDEX                        β”‚
β”‚  Tree structure for O(log n) navigation            β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Layer 1: RAW STORAGE                               β”‚
β”‚  SQLite + FTS5 + TF-IDF vectors                    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

🀝 A2A Agent Collaboration (Coming v2.5.0)

NEW

Multi-agent collaboration through the A2A Protocol (Google/Linux Foundation). Your AI tools finally talk to each other through shared memory.

  • Agent Discovery - AI agents discover SuperLocalMemory via Agent Cards
  • Real-Time Sync - Cursor saves a preference, Claude Desktop knows instantly
  • Secure by Default - Per-agent permissions, local-only auth, audit logging
  • Dual Protocol - MCP for tool access + A2A for agent collaboration
Why both MCP + A2A? MCP connects tools to memory (vertical). A2A connects agents to each other through memory (horizontal). Together, they make SuperLocalMemory the complete memory backbone for multi-agent workflows.

Core Features

πŸ” Hybrid Search (NEW v2.2.0)

Combines three search strategies for maximum accuracy:

  • Semantic Search - TF-IDF + cosine similarity for conceptual queries
  • Full-Text Search - SQLite FTS5 with ranking for exact phrases
  • Graph-Enhanced - Knowledge graph traversal for related concepts
  • Hybrid Mode - All three combined for optimal results
Measured: 10.6ms median search latency for typical databases. MRR 0.90 β€” first relevant result at position 1 for 9/10 queries.

πŸ“Š Visualization Dashboard (NEW v2.2.0)

Interactive web-based UI for exploring memories visually:

  • Timeline View - See memories chronologically with importance indicators
  • Search Explorer - Real-time semantic search with score visualization
  • Graph Visualization - Interactive knowledge graph with clusters
  • Statistics Dashboard - Memory trends, tag clouds, pattern insights
python ~/.claude-memory/ui_server.py
# Opens at http://localhost:8765

πŸ•ΈοΈ Knowledge Graph

Auto-discovers relationships you didn't know existed:

  • TF-IDF Entity Extraction - Identifies important terms and concepts
  • Leiden Clustering - Groups related memories into communities
  • Hierarchical Leiden (v2.4.1) - Recursive sub-clustering: "Python" β†’ "FastAPI" β†’ "Auth patterns"
  • Community Summaries (v2.4.1) - TF-IDF structured reports: key topics, projects, categories per cluster
  • Auto-naming - Clusters get descriptive names ("Auth & Tokens", "Performance")
  • Relationship Discovery - Finds connections between memories
Example: Search "authentication" and get JWT, OAuth, session managementβ€”even if never tagged together.

🎯 Pattern Learning + MACLA Confidence (v2.4.0)

Learns your coding identity with research-grounded Bayesian scoring (arXiv:2512.18950):

  • Framework Preferences - "You prefer React over Vue" (73% confidence)
  • Coding Style - "Performance over readability" (58% confidence)
  • Testing Approach - "Jest + React Testing Library" (65% confidence)
  • API Style - "REST over GraphQL" (81% confidence)
python ~/.claude-memory/pattern_learner.py update
python ~/.claude-memory/pattern_learner.py context 0.5

🌐 Universal Integration

Three ways to access the same database:

MCP Protocol

Real-time, IDE-integrated. Auto-configured for Cursor, Windsurf, Claude Desktop, Continue, and more.

Universal Skills

Slash commands for Claude Code, Continue.dev, Cody, Cursor, Windsurf.

CLI

Works in any terminal, scripts, automation. Simple slm command.

πŸ‘€ Multi-Profile Support

Completely isolated contexts for different projects:

  • Work Profile - Day job memories and patterns
  • Personal Profile - Side projects and learning
  • Client Profiles - Separate for each client (no context bleeding)
slm switch-profile work
slm switch-profile personal
slm switch-profile client-acme

πŸ”„ Auto-Backup System (NEW v2.4.0)

Never lose your memories. Automatic SQLite backups with full control:

  • Configurable Intervals - Daily, weekly, or custom schedule
  • Retention Policies - Keep N most recent backups automatically
  • One-Click Restore - Restore from any backup via dashboard or CLI
  • Safe Concurrent Backup - Uses SQLite's backup() API, no locking
python ~/.claude-memory/auto_backup.py backup   # Manual backup
python ~/.claude-memory/auto_backup.py list     # List backups
python ~/.claude-memory/auto_backup.py status   # Backup status

πŸ’Ύ Progressive Compression

3-tier storage system saves 60-96% space:

Tier Age Compression Savings
Tier 1 0-30 days None Active memories
Tier 2 30-90 days Progressive summarization 60% savings
Tier 3 90+ days JSON archival 96% savings

⚑ Measured Performance

All numbers measured on real hardware (Apple M4 Pro). No estimates β€” real benchmarks.

10.6ms

Search Latency (100 memories)

220/sec

Concurrent Writes

1.9 KB

Per Memory at Scale

0 Errors

10 Concurrent Agents

1.0

Trust Gap (perfect separation)

13.6 MB

10,000 Memories on Disk

0.28s

Graph Build (100 memories)

0.90

MRR (Search Quality)

LoCoMo benchmark results coming soon β€” evaluation against the standardized LoCoMo long-conversation memory benchmark (Snap Research, ACL 2024).
View full benchmark details β†’

πŸ”¬ Built on Research

πŸ“„ PageIndex (VectifyAI)

Hierarchical memory organization with tree structures for O(log n) navigation.

πŸ•ΈοΈ GraphRAG (Microsoft)

Knowledge graph with Leiden clustering for community detection.

🎯 MemoryBank (AAAI 2024)

Identity pattern learning that understands your preferences.

⚑ A-RAG

Multi-level retrieval with context awareness.

πŸ“Έ See It In Action

Visual tour of SuperLocalMemory V2's dashboard and capabilities.

Dashboard Views

Knowledge Graph

Live Events (v2.5)

Pattern Learning

Experience These Features

Install SuperLocalMemory V2 in 5 minutes. All features included, free forever.

⭐ Star on GitHub & Get Started